
NASA-CR-191398

5EG231

A SOFTWARE ENGINEERING VIEW OF THE

FLIGHT DYNAMICS ANALYSIS SYSTEM (FDAS)
P, 33

Prepared for

GODDARD SPACE FLIGHT CENTER

By

D. Card, W. Agresti, L. Jordan and V. Church

COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-27888

Task Assignment 40500

/
DECEMBER 1983

\

L

\

(NASA-CR-1913qS) A SOFTWARF

ENGINEERING VIEW OF THE FLIGHT

DYNAMICS ANALYSIS _Y_TE (FDAS)

(Comput:_r Sciences Corp.) 33 p

ZOlGl

N93-70825

Unclas

0136149

TABLE OF CONTENTS

Section 1 - Introduction i-i

1.1

1.2

1.3

1.4

The FDAS "Support Environment" Concept i-i

The FDAS Prototype Effort i-i
Evaluation Efforts 1-2

Summary and Overview 1-4

Section 2 - Assessment Criteria 2-1

2.1

2.2

2.3
2.4

2.5
2.6

2.7

Requirement for Global Knowledge of Application
Software 2-2

Requirement for New System Knowledge 2-2

Application-Level Flexibility and Accessibility .2-2

Ease of Application-Level Modifications 2-3

Effort for System-Level Modifications 2-3

Data/Software/Analysis Integration 2-3

Feasibility and Cost 2-4

Section 3 - Alternatives to FDAS 3-1

3.1 Defining Alternatives 3-1

3.1.1 Redevelop Existing Software 3-2

3.1.2 Comprehensive Data-Driven Program 3-3

3.1.3 Software-Builder Approach 3-4

3.1.4 Summary 3-4

3.2 Rating the Alternatives 3-4

3.2.1 Requirement for Global Knowledge or Application
Software 3-7

3.2.2 Requirement for New System Knowledge 3-8

3.2.3 Flexibility and Accessibility 3-9

3.2.4 Ease of Application-Level Modifications 3-9

3.2.5 Ease of System-Level Modifications 3-10

3.2.6 Data/Software/Analysis Integration 3-10

3.2.7 Feasibility and Cost 3-11

3.3 Comparing the Alternatives 3-11

Section 4 - Concepts and Implementation of FDAS 4-1

4.1 FDAS Command Language 4-3
4.2 FDAS Extended FORTRAN 4-4

Section 5 - Conclusions and Recommendations 5-1

5.1

5.2

5.3

5.4

Desirability of the Basic FDAS Concept 5-2
The Software Builder Alternative 5-2

The FDAS Prototype as a Requirements Definition
Tool 5-3

The Release 2 System as an Implementation 5-4

References R-I

ii

PRECEDING P;IG£ E_LANK _,;OT FILMED

SECTION 1 - INTRODUCTION

The Flight Dynamics Analysis System (FDAS) is intended to

provide an integrated software development support environ-

ment for research applications in the areas of orbit, atti-

tude, and mission analysis. FDAS was conceived to assist

users in the preparation, execution, and interpretation of

software experiments. This memorandum provides an assess-

ment of FDAS at one step in the requirements definition proc-

ess--a prototype support environment. /_ ,/

i.i The FDAS "SUPPORT Ek_IRONMENT" CONCEPT

Several independent systems now provide parts of the flight

dynamics experiment capabilities that FDAS is to encompass.

These systems include the Research and Development Goddard

Trajectory Determination System (R&D GTDS), the Goddard Mis-

sion Analysis System (GMAS), the Research and Development

Mission Analysis System (RADMAS) and the Attitude Dynamics

Generator (ADGEN). Some of the software comprising these

systems will be adapted for FDAS.

These existing systems are awkward to use for experimentation

because of the difficulty in modifying the software for a

particular study. A detailed knowledge of both the research

software and the computer system on which it runs is required

for typical investigations, even when the modification in-

volved is relatively clear and compartmentalized. FDAS is

to provide a user-friendly executive for selecting and com-

bining elements from a common software library to perform

any required experiment. FDAS is intended to supplant the

R&D GTDS, GMAS, RADMAS, and ADGEN systems.

1.2 THE FDAS PROTOTYPE EFFORT

The "support environment" concept of FDAS is unlike that of

any system previously developed in the'GSFC Flight Dynamics

area. As a consequence, the requirements for the system were

i-i

unclear and the magnitude of the needed software development

effort unknown. To clarify these issues, a prototype of the

proposed FDAS system was developed. The prototyping effort

was part of the requirements definition process, where issues

and concepts could be tried and tested without committing the

full system to potentially flawed approaches. Development of

the prototype was expected to aid in defining the scope of

the full FDAS system, both in functionality and magnitude.

1.3 EVALUATION EFFORTS

This memorandum describes one of four evaluations of the FDAS

"concept and prototype. Each evaluation team has approached

FDAS from a different perspective. Academicians are assess-

ing it as a case study of the prototyping approach to soft-

ware; potential users are judging its utility and flexibil-

ity; the developers are evaluating the quality of the imple-

mentation and design; and this group of reviewers is attempt-

ing to take a software engineering point of view.

In discussions, in literature research, in exercising the

prototype system, we tried to address FDAS at four levels:

the "support environment" concept, the specific approach

implied by the FDAS prototype, the prototype as a require-

ments definition tool, and the usability of the features pro-

vided in the prototype. The specific questions we addressed

in our study include:

What are the goals of FDAS, and what criteria can be used

in assessing their achievement?

What alternative approaches might be taken to solving the

problem that FDAS is intended to address?

How well does the approach taken (that implied by the

decisions made in building the prototype) compare with

other possibilities?

1-2

How effective is the prototype FDAS in meeting its re-

quirements (providing information about the requirements

and feasibility of the full FDAS)?

How well do the design concepts employed in the prototype

support the end goals of FDAS?

It is our hope that the results of this and other studies of

FDAS will aid in the specifications and development planning

for the full FDAS system.

1.4 SUMMARY AND OVERVIEW

Section 1 of this assessment report provides the context for

evaluation, describing the FDAS concept, the current stage

of requirements definition, and our particular orientation.

In Section 2 we present the criteria which we defined for

use in (relatively) objectifying the FDAS goals of combining

functionality and power with ease of use. To provide a basis

of comparison, we identified several alternative approaches

to satisfying those criteria. Section 3 defines these al-

ternatives and discusses the strengths and weaknesses of

each. Based on these comparisons, and on precepts and

principles of human engineering, we evaluated the FDAS pro-

totype. Our findings, both on concepts and on their realiza-

tion, are examined in Section 4. Section 5 presents the con-

clusions of this evaluation group (summarized below) and its

recommendations for future FDAS development.

Our major conclusions can be summarized as follows:

The FDAS concept is an attractive and feasible direction

for improving the Flight Dynamics analysis working envi-

ronment. Similar efforts in other fields have demonstrated

their value; flight dynamics need not be an exception.

The "software builder" approach taken in the FDAS proto-

type is a feasible solution to the original problem; but

it is not the only solution, not is it clearly superior

to other possibilities.

1-3

' T

The FDAS prototype effort is a poor example of a proto-

type; rather than painting in broad brush strokes so that

competing concepts and approaches can be evaluated, the

FDAS prototype presents one excessively fine view of a

potential solution. Where a prototype should serve as a

tool or test bed for requirements defintion, the FDAS ef-

fort almost requires a "yes/no" assessment.

The user interface provided by the FDAS prototype is ex-

ceedingly difficult to use; repeated attempts to make pro-

ductive use of the system, with extensive reference to

the user's manual but without recourse to the developers,

were unsuccessful. The user interface should be the cen-

tral element of an interactive prototype; in this case it

was an obstacle to evaluation of FDAS.

1-4

y

SECTION 2 - ASSESSMENT CRITERIA

Because our purpose is to assess the basic concept underlying

FDAS (as well as the FDAS prototype), we began by restating

the initial problem in terms of assessment criteria. These

criteria provide an independent (and corroborative) view of

the goals and intended purpose of the system; they represent

a less "implementati°n-directed" view of the general FDAS

requirements than is presented in the prototype documentation.

These criteria provide the basis for our evaluation of the

FDAS prototype, the FDAS approach as embodied in the proto-

type, and alternative approaches to addressing the original

problem.

We considered that the initial driving requirement is for a

tool or support environment which would let an analyst make

and test modifications to (largely) preexisting models with-

out having to leave the level of abstraction reauired of the

analysis. That is, a comparative study of orbit propagation

algorithms should not have to deal with the level of files

and compilers and "housekeeping" code - it should deal with

orbit algorithms and the mechanizations thereof. The assess-

ment criteria described below reflect our understanding of

how this requirement might be satisfied.

Seven criteria were identified; these are listed here and

elaborated below:

• Requirement (of the user) for global knowledge of the

application software.

• Requirement for new ancillary learning to use the sys-

tem.

• Flexibility and accessibility of provided capabilities.

• Ease of application-level modifications.

• Effort required for system-level modifications.

2-1

[!

Q Data/software/analysis integration of the support en-

vironment.

Feasibility and cost of implementation.

REQUIREMENT FOR GLOBAL KNOWLEDGE OF APPLICATION SOFTWARE

A significant problem with the current approach to testing

new conditions is the lack of separability of the software

involved. A user should be required only to understand how

his or her particular concern relates to the rest of the

system in an algorithmic sense (at the application level of

abstraction), without learning the details of how data is

transferred and COMMONs assigned. This criterion measures

how much of the mechanics of the application system must be

understood in order to make use of the operative elements of

the system. Minimizing this measure is desirable as it al-

lows the analyst to operate at the problem level instead of

the process level.

2.2 REQUIREMENT FOR NEW SYSTEM KNOWLEDGE

In order to use the present applications systems, the user

needs to know how to edit, compile, and execute programs on

the host computer(s); this is typically not different from

other computer related tasks, and does not require any con-

ceptually new knowledge of the support system. A new, com-

prehensive support environment may require that users learn

new skills and terminology to avail themselves of the bene-

fits and capabilities. The FDAS should minimize this new

learning requirement so as not to pose a hurdle to its

initial use.

2.3 APPLICATION-LEVEL FLEXIBILITY AND ACCESSIBILITY

A primary purpose of FDAS is to support modifications to

previously developed models, simulators, experiments, and

algorithms. This criterion measures the degree to which the

common library of software isaccessible for change and

2-2

experimentation. Low-level functionality is the primary

concern here; details of input and output or the precision

of calculations may be subject to experimentation. While

major components (such as a drag model) are expected to be

replaced, utility functions may not be as readily accessible.

2.4 EASE OF APPLICATION-LEVEL MODIFICATIONS

The nature of the analytical efforts to be supported requires

that data or software or both be modified and tested. A

critical requirement for FDAS is to facilitate such modifica-

tions. Typical changes include supplying a new set of ini-

tial conditions, or changing the convergence control on an

interation, or replacing a major component (such as a drag

model).

2.5 EFFORT FOR SYSTEM-LEVEL MODIFICATIONS

Evolution of the working environment may lead to requirements

for new supporting or utility functions, new analysis tools,

different I/O capabilities, new system-level functionality.

This criterion addresses the difficulty of adding such new

features to the support system. (It is assumed that such

additions would typically be performed bythe implementation

or maintenance group - not by users).

2.6 DATA/SOFTWARE/ANALYSIS INTEGRATION

As a support environment, FDAS should assist the user in

managing the tests and trials and changes which constitute

the analysis activity. FDAS should provide automatic facil-

ities for logging results, recording initial conditions and

software versions, and supporting analytical comparisons.

This function is typically performed by the user with the

host computer file system and careful notes; this criterion

measures how much of that error-prone activity is assumed

by the support environment.

2-3

[!

2.7 FEASIBILITY AND COST

Although this study group was not directed to evaluate cost

per se, the relative magnitude of various approaches is an

inescapable point of comparison. Studies of similar systems

in academic or industrial environments can demonstrate the

basic feasibility of such advanced support tools. The com-

plexity and probable effort required for various alternatives

is addressed with this criterion.

2-4

SECTION 3 - ALTERNATIVES TO FDAS

This section discusses alternative approaches to meeting the

FDAS objectives described in the last section. Three major

alternatives are developed. There are three variations of

each alternative depending on the type of implementation

language. The alternatives are rated using the assessment

criteria of Section 2.

3.1 DEFINING ALTERNATIVES

The assessment team addressed the questions of postulating

candidate software systems to meet the goals of FDAS. In-

stead of presenting all the early proposals, a list is given

below of key questions which illustrate the features that

distinquish the alternatives from one another:

• What does the system do for the user?

• How does the system perform its fuctions?

• How does the user interact with the system?

• Does the system provide its own storage management

facilities for data sets, programs, or program parts?

• Does the system produce only output data from program

execution, or does it generate application program?

• Can any developed programs be extracted from the sys-

tem and executed independently?

• What is the scope of the system? For example, does it

provide facilities for editing and program composition?

• Does the user write code? Or is processing described

by user responses to prompts of the system?

• How does the system appear to the user - in some

graphical form, as menus, as command language?

These questions were used to identifiy the distinguishing

characteristics of the various proposals. Three alternatives

emerged as significantly different approaches. Each alterna-

tive actually represents a class of systems, differentiated

3-1

as to distinguishing features would be elaborated to form

operational products.

3.1.1 REDEVELOPEXISTING SOFTWARE

The first alternative is to redevelop existing software to
make it more modular and more usable. The software would

consist entirely of application programs. No system-execu-

tive functions would be implemented. The users would continue

to rely on existing systems software (operating system,

linker, etc.). We emphasize that this is not a "do nothing"

alternative. The approach described here is to repackage

existing software functions so that analysts can work with

them more easily. New code would be written, especially to

improve the user interface. It is expected that some of the

technical sections of code would be directly reusable.

The present software - R&D GTDS, GMAS, RADMAS, and ADGEN -

would be considered to comprise a single collection of func-

tions; decisions would be made to organize these functions

in a more useful way.

The particular language chosen for use in the redevelopment

is an important factor, because (in contrast to other alter-

natives) both developers and users would be working in that

language. (In fact, implementation language emerged as an

orthogonal concept in the consideration of alternatives.

For each of the three alternatives, the language must be

addressed.)

FORTRAN is an obvious candidate because it is used currently.

A second option is a different existing language, e.g., Pas-

cal or Ada. The assessment team did not consider the avail-

ability of cempilers, only that using a different language

is a reasonable choice. A third language possibility is a

special-purpose flight-dynamics language, designed to meet

the needs of analysts and other users in the application area.

3-2

A special-purpose language would contain data types and op-
erations tailored to flight dyn_nics. Special-purpose lan-

guages are widely used as shown in rosters of programming

languages (Reference i).

3.1.2 COMPREHENSIVEDATA-DRIVE PROGRAM

The second alternative is to develop a comprehensive multi-

function program whose behavior is controlled by user option-

lists or responses to prompts. The program appears to the
user as a self-contained entity - a collection of model types,

analytical procedures, and executive support functions. The

user doesn't write procedural code to add major new capabil-

ities; instead, the features of the program are implemented

so that as many parameters and variations as possible are

exposed to the user. The program leads the user through

model definition and experiment execution by presenting the

user with opportunities to make choices, enter values, or

insert one-line functions. The program may be knowledge-

b_sed (Reference 2), containing inference rules and question-

ing the user for the information it needs to arrive at a com-

plete specification of an execution environment.

Some examples from other application areas may help to ex-

plain this alternative, although no example should be ex-

pected to match perfectly with the FDAS situation. Consider

the program used by automobile designers to relate vehicle

design to expected miles-per-gallon. The program has a sig-

nificant graphical component, leading the user through the

process of drawing or specifying the external shape of the
vehicle. Next the user makes decisions about the composition

of materials and the distribution of weight over the vehicle.

An analytical model, embedded in the program, outputs the

average miles-per-gallon based on vehicle surfaces, weight,
and other factors.

3-3

As another example consider a single program to simulate the

operation of an airline. Many submodels must be included to

represent finance, marketing, passenger loading, costs, rev-
enues, routes, etc. The user is lead through the program to

answer "what if" questions by responding to system prompts.

Other examples of complex, multi-function programs are de-
scribed in References 3 and 4.

3.1.3 SOFTWARE-BUILDINGAPPROACH

The third alternative is a software builder system that en-

ables the user to combine new or old software components with

data to make cemplete models. References 5 through 8 contain

various features of software builder systems. Because the

current FDAS prototype is representative of this class, the
alternative will not be discussed here in detail.

3.1.4 SUMMARY

In summary, three approaches have been developed:

• Redevelop existing software

• Comprehensive data-driven program

• Software builder

Furthermore, each approach can be developed under each of

three language options:

• FORTRAN

• Another existing language

• Special-purpose language

The three alternatives and three language variations define

nine different possibilities for comparison.

3.2 RATING THE ALTERNATIVES

The alternatives of Section 3.1 were evaluated using the

criteria developed in Section 2. There were three implemen-

tation approaches and each one could use three languages,

for a total of nine alternatives.

3-4

To obtain a guantitative assessment, the assessment team con-

sidered each criterion in turn, ranking the alternatives from

one (best) to nine (worst) according to how well the alterna-

tive met the criterion. Adjustments were made for ties.

Table 3-1 shows the results of the rankings, which should be

interpreted in light of the following:

• Although they have been expressed quantitatively, the

rankings are, of course, subjective.
r

• Ordinal measures (rankings) were as definitive as the

team wanted to be regarding the comparison of alterna-

tives.

• The alternatives had unequal levels of specification.

With the software builder, there exists a particular

instance of that approach, viz., the FDAS prototype,

where the other two alternatives were understood at

the level of Section 3.1.

Before discussing the implications of the results, the re-

mainder of this subsection describes some of the reasoning

which led to the rankings in Table 3-1. Each criterion

(column in Table 3-1) will be discussed in turn. The rela-

tionships that exist in the rankings will be expressed in the

following notation:

• Approaches

RWS - Redevelop existing software

CP - Comprehensive data-driven program

SB - Software builder

• Languages (as subscripts)

F - FORTRAN

O - Other exsting language

S - Special-purpose language

3-5

/_ C7W-P N.4 _-t s'E__

-- _DEv'E-Lop

F8 .e-r_

• 0,-_ E,V_T. _/_

• Z re-c_AL-_._, IA_.

.,,'__.--___:_/:'_ 6p_,_
• _.e-rp_

• _,r_ _, _.

• __p_,_._. _

- 56_--_'Mc E___
• F8_-r_
- _ _,_ __

. ___f_, _

°o _, _. -_

[,,,

"7-OWA L

_L

3-6

For example, the relation CPF<RSWsrefers to a comprehensive

program approach implemented in FORTRAN having a lower (bet-

ter) ranking than redeveloped software in a special-purpose

language. When no subscripts are present, the relation holds

across any language choice - e.g., SB<CP means that the soft-

ware builder is better than the comprehensive program regard-

less of language used.

Each of the seven criteria will now be considered. The rank-

ing relationships will be stated and the reasoning behind

that relation will be expressed.

3.2.1 REQUIREMENT FOR GLOBAL KNOWLEDGE OF APPLICATION SOFT-

WARE

CP<SB<RSW

The user of a comprehensive program could respond to prompts

without detailed knowledge of how the model was implemented.

A software builder would require more user knowledge to fit

the parts of the model together. To use redeveloped existing

software would demand the most knowledge of the model because

the user would not be given any assistance in putting together

existing programs.

CPF=CPo=CPs

Because the user inputs are so restricted, the language used

in the single program would not affect the rating signifi-

cantly.

RSWs<RSWo<RSW F

SBs<SBo<SBF

It seems reasonable to assume that any special purpose lan-

guage would be designed with this knowledge criterion in

mind, so it would be better than other existing languages,

many of which would (in turn) conceal model details better

than FORTRAN.

3-7

3.2.2 REQUIREMENTFOR NEWSYSTEMKNOWLEDGE

RSWF<CP

Users know FORTRANalready, so that redevelopment in FORTRAN

would not entail learning any additional command language or

support software. The next best choice would be a comprehen-

sive program, which would handle all support and system com-

mands while leaving the user only to learn sets of responses.

SPF=SPo=SP S Same as under "Knowledge" criterion

SP<RSWs<RSW O

The restricted range of responses in a comprehensive program

would shield the user from learning system support commands.

Redeveloping software in a language other than FORTRAN would

require the user to interface with the software support en-

vironment in somewhat different ways than at present (e.g.,

different compilers, different conventions for accessing sys-

tem libraries, etc.).

RSWo<SB

The software builder would require the user to learn new com-

mands to manage the support environment. This would be more

difficult than the learning required in the case of redevel-

oped software because, even with a non-FORTRAN language, the

commands would have something in common with the present user

interaction-running compilers, using editors, etc.

SBF<SBs<SB O

The FORTRAN familiarity would help the user the most. Next,

a special-purpose language would be designed with this learn-

ing criterion in mind so it would presumably be easier than

a non-FORTRAN existing language.

3-8

3.2.3 FLEXIBILITY AND ACCESSIBILITY

RSWF=RSWo=SBF=SBo

All four options provide the user with a procedural language

which allows access to any details of the model.

RSWF=RSWo=SBo<RSWs=SBs

The special-purpose languages may not permit access to some

detailed aspects of the model because they would likely be

designed to conceal some of the details from users.

RSWs=SBs<CP

A user will not have the flexibility of working in a lan-

guage when interacting with a single program.

3.2.4 EASE OF APPLICATION LEVEL MODIFICATIONS

P<SB<RSW

The "prompt and respond" interaction with a comprehensive

program would enable the user to make small changes very

easily. The generalized input/output and separate parts in

a software builder would require more effort but still less

than the use of redeveloped existing software in which the

user would need to work through language rules to make

changes.

CPo=CPF--CPs

Same as under "Knowledge" criterion

SBs<SBo<SBF

RWSs<RSWo<RSWF

It seems reasonable to assume that any special-purpose lan-

guage would be designed so that small changes would be eas-

ier to make than in existing languages. FORTRAN lacks many

features ef other existing languages. Some of the features

influence the effort to make changes, e.g., dynamic memory

allocation, more data types, scoping, concurrency, etc.

3-9

3.2.5 EASE OF SYSTEM-LEVEL MODIFICATIONS

SB<RSW<CP

The organization of the software builder would make it easy

to add new modules and integrate them into larger models.
The simple interfacing in the software builder is missing

from redeveloped existing software, making additions more

difficult. A comprehensive program is intended to be all-

encompassing, so it would not offer features for adding units
to the model.

SBs<SBo<SBF

RSWs<RSWo<RSWF

CPs<CPo<CPF

A special-purpose language would have some facility for add-
ing program units because that feature is of interest to the

users. It would be easier to add modules with several exist-

ing languages than with FORTRAN, because these languages

offer a richer collection of subprogram types and supporting
features.

3.2.6 DATA/SOFTWARE/ANALYSIS INTEGRATION

CP<SB<RSW

A comprehensive program would necessarily be a completely

integrated package as part of its implementation. The soft-

ware builder would have facilities for integrating support

functions so it would be much better than existing software.

CPF=CPo=CPS

SBF=SBo=SBs

RSWF=RSWo=RSWS

The particular language used would not matter significantly

in determing how well the system was integrated with its sup-

port environment.

3-10

3.2.7 FEASIBILITY AND COST

RSWF<CPF<SBF

RSWo<CPo<SBo

RSWs<CPs<SBs

The alternatives of redeveloping existing software require

the least innovation to implement. Organizing the system as

a comprehensive program would involve more thinking to con-

sider approaches for integrating user flexibility and model

completeness. A software builder is the most demanding to

implement because of the introduction of generalized input/

output, software pacts manipulation, and model management.

SBF<RSWO

This assessment hinges on the trade-off between effort to
implement the features in the software builder while remain-

ing with FORTRANand the effort to redevelop existing soft-

ware with no significantly new features but switching to

another language for the implementation. The decision was

made that the effort to switch languages would be greater

than the effort to implement new features.

SBo<RSWS

The effort to implement new features in the software builder

and use a non-FORTRAN language is substantial. However, the
assessment was that this effort would be less than the effort

involved in designing a special-purpose language and redevel-

oping existing software in that new language.

3.3 COMPARING THE ALTERNATIVES

From the rankings in Table 3-1, the software builder alter-

native used with the FDAS prototype is not clearly superior.

The comprehensive program is best, followed by the software

builder, with redeveloped software last. Regarding the

choice of language within each approach, FORTRAN is ranked

3 -ll

best, followed by "other existing language" and special-pur-

pose language.

It is unwise to rely exclusively on the numerical totals.

Adding the rankings to produce a total for each alternative
means that all criteria have equal weights, which is not

generally true. For example, if "flexibility" and "ease of

extending the system" are more heavily weighted then the

comprehensive program would be penalized and the software
builder made more attractive.

Some basic features of the assessment procedure must be re-

called whenever results are discussed. For example, agree-

ing to use those particular seven criteria was a fundamental

decision which obviously effects the assessment. Also, the

ordinal measures correspond to equal intervals between suc-

cessive ranks. Perhaps in a lengthier assessment period with

more discussion, the assessment team might have been willing

to commit to some rough interval measurement - e.g., how
much better is the first choice than the second choice?

A "learning curve" characteristic of the criteria is less

obvious but no less important to a fair reading of the re-

sults. Some criteria are significantly only with the first

uses of the system while other criteria are uniformly appli-

cable over the system's lifetime. For example, "minimize

new system knowledge" is an issue when users begin to inter-

act with the system. As the user becomes more familiar with

the system, the importance of this criterion diminishes.

"Feasibility and cost" is another criterion with an initial

impact but no continuing relevance. In contrast, "flexibil-

ity" is assessed by considering features which are represen-

tative of the interaction with the system at any time during

its life. If the two "short-term" criteria are deemphasized,

the software builder alternative is more attractive.

3-12

Another consideration which the assessment team was unable

to judge concerned the degree to which the alternatives are

consistent with broader objectives of the using organization.

In short, are the side effects beneficial or not? Consider

an approach which calls for development in another existing

language, say, Pascal. A lasting benefit to the organiza-

tion would be the increased staff skills in Pascal program-

ming, assuming the staff was not fluent in Pascal. Such

development would also likely create a continuing need for

Pascal skills for maintenance and enhancement. The same ob-

servation is true of other alternatives which involve a de-

gree of innovation to develop the system. Experience imple-

menting the features of the software builder is a benefit

when similar features need to be introduced in other soft-

ware. If a low ranking on "ease of implementing" is due to

the innovative nature of the task, there may be a cause for

reassessment to account for the benefit of increasing the

skills of the staff who developed the innovative techniques.

In summary, the results clearly show that other alternatives

are viable. The comprehensive program approach is the best

one based on the rating procedure used, but a final deter-

mination depends on how the criteria are weighted and how

important are other considerations discussed here, e.g.,

long-term benefits.

3-13

SECTION 4 - CONCEPTS AND IMPLEMENTATION OF FDAS

The FDAS prototype incorporates some important software engi-

neering concepts. The purpose of this section is to review

these concepts as they likely would be realized in the full

implementation of the system. FDAS provides an integrated

program development environment for non-expert programmers

working on flight dynamics problems. In the terminology of

Section 3, it is a "software builder" The software engi-

neering concepts included in FDAS were selected to facilitate

its function of enabling users to construct and execute pro-

grams with only a minimal knowledge of the encompassing sys-

tems.

The basic organizational concept of FDAS is the "experiment".

It consists of three steps: assembling data and software in

compatible formats; executing the software with the data; and

analyzing the results. The experiment concept accurately

reflects the viewpoint of the user. However, some consider-

ation should be given to explicitly distinquish between data

and software preparation in FDAS.

FDAS has three basic components that combine to produce an

experiment (figure i). Experiment data and experiment soft-

ware are stored in libraries under the control of the exper-

iment management system. An analyst uses this system to

construct and execute an experiment. The results analysis

step is not studied in this evaluation because it is not well

defined in the FDAS prototype. The user interacts with the

experiment management system via a series of menus and/or

commands. The experiment software is composed in an extended

FORTRAN language. These two features, the command language

and extended FORTRAN are discussed in more detail in the

following sections.

4-1

®

i |

I

l

|
!
!

- - - _ Tro_'F-_r,,_'_

4-2

4.1 FDAS COMMAND LANGUAGE

The FDAS command language enables the user to retrieve soft-

ware segments, modify software segments and data, and control

the sequence of execution. An hierarchical menu system gen-

erates commands for the novice user. An awkward feature of

the menu structure is the lack of a sequential path through

it. That is, the user can only get to the next step (e.g.,

from preparation to execution) by first backing up. This

is inconsistent with the basically sequential concept of

"experiment". Consequently, it interferes with the novice's

learning.

The FDAS command language could be an effective tool for the

experienced used. The ability to save sets of commands as

experiment control programs (ECPs) enhances the ease of use

of the system. However, a false sense of continuity can be

engendered by the use of ECPs. Two executions of the same

ECP do not necessarily perform the same experiment. Changes

to software and data are not always reflected in an ECP. In

order to guarantee that an experiment is repeatable, the

facility to save load modules must be available. Further-

more, the mixture of data and commands in an ECP can be con-

fusing to the user.

Some of the. terms used in the FDAS command language are non-

standard. The terms MODULE and COMPONENT, for example, are

confusing to users. FDAS cannot be used effectively by

someone with no programming knowledge. Anyone sophisticated

enough to change a module or component will be expecting

terms such as system, subsystem, and subroutine. Another

term, ALIAS, is a misnomer. "Equivalence" would be more

appropriate.

The MENU and HELP facilities, by themselves, are inadequate

documentation. Relying on them is analogous to traveling

across country aided only by a set of one-square-mile (each)

4-3

0

maps. It is difficult to determine where you've been or

where your're going, even if the gas station you are parked

at appears on one of the maps.

4.2 FDAS EXTENDED FORTRAN

The experiment software managed by FDAS is implemented in

an extended version of the FORTRAN language (FPL). The

special language features are provided by a preprocessor,

FPL, which extends FORTRAN to include global system param-

eters, abstract data types, abstract data functions, and

generalized input/output. These features facilitate soft-

ware packaging and intermodule communications.

However, the abstract data types are limited to a subset of

FORTRAN types (e.g., vectors and matrices are special cases

of arrays). Although a data type such as the quaternion

could easily be added to FPL, other basic types such as the

set and stack are intractable. Also, the concept of abstract

data types profitably could be extended to a higher level

(e.g., experiment).

The generalized input/output feature provides a flexible

method of intermodule communications. However, it does not

provide any protection against unintentionally accessing and/

or altering unrelated data. Instead of developing a preproc-

essor, this capability could have been implemented as calls

to a subroutine package.

The system parameter, abstract data, and generalized input/

output features could be provided in a less awkward and more

powerful format (with less programming effort) by employing

a language that includes abstract data types and scope defi-

nitions. PASCAL, for example, has a much wider range of data

types than those provided by FPL. The scope feature of PASCAL

allows a variable declared in the "root" of a program to be

accessed without declaration anywhere else in the program.

4-4

SECTION 5 - CONCLUSIONS AND RECOMMENDATIONS

The major conclusions and recommendations of this evaluation

group, presented in detail below, can be summarized as fol-

lows:

The FDAS concept has substantial merit and should be pur-

sued.

The specific approach of the current FDAS development

(which we have termed a "software builder" alternative)

is a feasible concept, but not clearly superior to other

approaches.

The FDAS prototype is unsatisfactory as a prototype; it

carries untested design assumptions to excessive detail,

so that evaluations are performed on the detail - not on

the assumptions.

The FDAS prototype is unsatisfactory as a minimal set of

user interaction capabilities; it is difficult to use,

its behavior is unpredictable, its terminology confusing.

The problems are not with the lack of those functions that

are not available in the prototype, but with the intract-

ability of those that are.

We recommend that the requirements definition effort be

pursued, and that several alternative approaches be stud-

ied (chief among them: a software builder approach using

Pascal; and a comprehensive data-driven program approach).

Consideration should be given to a new prototyping effort

with goals and criteria much more carefully specified -

the prototype should not be a "limited capability" version

of the planned full system, but a mock-up for testing

user-interaction concepts.

5-1

5.1 DESIRABILITY OF THE BASIC FDAS CONCEPT

The various requirements documents and data make a strong

case for the replacement of existing clumsy, ill-suited

software with a coordinated support environment. Current

research and practice, in areas as varied as DoD's planned

Ada (tm) Programming Support Environment (APSE) and inte-

grated microcomputer software (e.g., Lotus 1-2-3) indicate

the need and user acceptability of such functional coordin-

ation. The areas addressed by FDAS have so much in common

that a unified analytical tool has a substantial amount of

leverage in terms of reused software. Comparable (though

not equivalent or transportable) support tools are effective

in other areas; flight dynamics analysis activities can al-

most certainly benefit as well.

This evaluation team approached this assessment with a mod-

erate to strong positive bias toward the concept and goals

of FDAS; our review and research have, if anything, strengh-

ended this bias. We strongly recommend pressing forward with

a requirements definition effort for FDAS.

5.2 THE SOFTWARE BUILDER ALTERNATIVE

This group, working from the initial problem statement and

searching literature and experience for examples, identified

several feasible approaches to designing an FDAS full system.

We developed a rating scheme to compare these approaches ac-

cross initial requirements. We found that the "software

builder" alternative embodied by the current seftware effort

is only one of several possibilities. We concluded that many

desirable features could better be provided with either a

different base language (e.g., Pascal) which would facili-

tate provision cf data abstraction, global common data, and

modular program element construction capabilities; or with

a comprehensive data-driven program which might obviate al-

together the need for analysts to be programmers. The effort

5-2

required to convert existing software to the FDAS-prototype

extended FORTRANapproach was projected to be so large that

the penalty for converting to an entirely different language
or mechanism would be small relative to the total effort.

We recommend that a requirements definition effort be di-

rected toward defining requirements in terms applicable to

several approaches, and that several approaches be seriously
considered and assessed. We recommend further that particu-

lar attention be paid to the language issue - the advantages

of "coming" languages (Pascal or Ada), in terms of modular-

ity, transportability, and availability of trained program-

mers in coming years are substantial.

We also recommend that more detailed profiles of the intended

user and uses of the FDAS be developed. If the requirement

that the user need not be a software expert is taken seri-

ously, the value of the "software builder" approach is sig-

nificantly reduced.

5.3 THE FDAS PROTOTYPE AS REQUIREMENTS DEFINITION TOOL

In software design a prototype should serve two purposes:

it should aid in testing the utility of proposed capabili-

ties, and support the "proof of concept" of those capabili-

ties With demonstrable value (Refernces 9 and i0). The FDAS

prototype seems to have addressed the second problem without

adequately treating the first. Instead of a testbed where

concepts and terminology (such as "experiment" and "module"

and "alias") can be tested at small cost, the Release 2 sys-

tem provides a demonstration that these elements can be

implemented (albeit with greater effort than initially pro-

jected). The level of information to be derived from such

a detailed prototype is further into design than is war-

ranted by the state of requirements defintion. The proto-

type can indicate that this particular menu system is not

user-friendly; but it does not provide guidance on how better

to build one.

5-3

The goals of the prototype (the questions it was to help

answer) were not formulated in a manner conducive to objec-

tive results. The apparent guideline was that the prototype

should provide a subset of the full FDAS functionality; the

"prototype" characteristic is reflected in that no "hooks"

were included for later development and that software in-

strumentation was incorporated. A better definition of

"prototyping" should have been employed.

This group recommends that a somewhat different orientation

be used on future prototyping efforts, and that this project

not be used as a model for such efforts.

5.4 THE RELEASE 2 SYSTEM AS IMPLEMENTATION

It can be difficult, when assessing a prototype, to distin-

quish between design characteristics and artifacts of imple-

mentation. We have tried to focus on essential elements of

the FDAS approach selected to date, but cannot warrant that

we have succeeded in all cases. We identified as central to

the selected design the user interface approach, the data/

software management capability (the executive), and the

language extension provided by the FPL preprocessor.

The menu and command-driven user interface does not meet its

goals of ease of use and user friendliness. The automatic

sequence is not clear or predictable, the contextual clues

_ague or non-existent, the terminology confusing. No user

should be propelled into the system editor (with an active

file) without specifically requesting it; defaultsshould

not lead in circles. We intended to build a small FORTRAN

system as a test of the data management and analysis capa-

bilities; we were unable adequately to master the use inter-

face.

The terminology selected for the data management executive

(chosen somewhat to be distinct from software development

5-4

J

terms) is unclear. It was apparent that the data management

function was complex, and it appeared to work; but the user

interface was an obstacle.

The capabilities procided by the FPL preprocessor (notably

data abstraction and standardized I/O) are highly valued in

the software engineering world (though no objective studies

have been reported), but could have been provided with other

means. The justification for the preprocessor is unclear.

We recommend that the user interface be completely respeci-

fied and redesigned; that the data management structure be

more rationally organized; and that the entire question of

the need for a preprocessor be reevaluated.

5-5

REFERENCES

10.

i. J. E. Sammet, "Roster of Programming Languages," AC__MM

SIGPLAN Notices, September 1972; pp. 3-12.

2. C. R. Hollander and Y. Iwasaki, "The Drilling Advisor,"

Proceedings of the IEEE Spring COMPCON. New York:

Computer Societies Press, 1983; pp. 116-119.

3. L. Forman, "The New York Times Corporate Planning Model,"

Proceedings of the Winter Simulation Conference.

New York: Association for Computing Machinery, 1976,

pp. 437-448.

4. M. D. Mesarovic, et. al., Mankind at the Turning Point.

New York: E. P. Dutton, 1974.

5. B. Meyer, "Principles of Package Design," Communications

of the ACM, volume 25, number 7, July 1982, pp. 419-424.

6. J. F. Isner, "A Fortran Programming Methodology Based

on Data Abstraction," Communications of the ACM, volume

25, number i0, October 1982, pp. 686-697.

7. M. M. Zloof and S. P. deJong, "The System for Business

Automation (SBA): Programming Language," Communications

of the ACM, volume 20, number 6, June 1977, pp. 385-395.

8. P. Bassett and J. Giblon, "Computer Aided Programming

(Part I)," Proceedings of the IEEE SoftFair. New York:

Computer Societies Press, 1983, pp. 9-20.

9. R. E. Mason and T. T. Carey," Prototyping Interactive

Information Systems," ACM Communications, volume 26,

number 5, May 1983, pp. 347-354.

L. Sharer, "The Prototyping Alternative" Programming,
1983.

R-I

